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LE"ER TO THE EDITOR 

Critical dynamics of quantum chains by position space 
renormalisation group 

R B Stinchombe and R R dos Santost 
Department of Theoretical Physics. University of Oxford, 1 Keble Road, Oxford 
OX1 3NP, UK 

Received 27 March 1985 

Abstract. A decimation transformation is applied to the homogeneous equations of motion 
for creation and annihilation operators of kink-like excitations of the transverse Ising and 
XY chains at zero temperature. We obtain the exact dispersion relations and their dynamic 
scaling form. The static behaviour is derived as the zero frequency limit of the recursion 
relations. 

In this letter we study the dynamic critical behaviour of transverse Ising and isotropic 
transverse X Y  chains at zero temperature, by a position space renormalisation group 
method. 

Near a critical point, some spin fluctuation modes (usually the ones with long 
wavelength) have very long relaxation times (critical slowing down). These set the 
time scales for time-dependdt phenomena near a critical point whose length scales 
are set by correlation lengths, as in statics. From these ideas, dynamic scaling theories 
were proposed by Ferrell er a1 (1967) and by Halperin and Hohenberg (1969) which 
later gave rise to the dynamical renormalisation group (DRG) (for a review, see 
Hohenberg and Halperin 1977). Until recently, most of the work on DRG relied on E 

expansions in momentum space, with the exception of the kinetic Ising model (Glauber 
1963) to which the usual position space renormalisation group ( PSRG) techniques 
(Niemeijer and van Leeuwen 1976, Burkhardt and van Leeuwen 1982) have been 
applied by Marland and Stinchcombe (see Marland 1977), Achiam (1978, 1979), 
Mazenko et a1 (1978) and Suzuki (1979). The dynamics of the diluted Heisenberg 
model near the percolation threshold has been recently investigated (Stinchcombe 
1983, Hams and Stinchcombe 1983, Stinchcombe and Hams 1983) by a PSRG technique 
in which the decimation of the spin variables was carried out in the equation of motion 
for the Green function. This technique had previously been introduced for non-critical 
dynamics of disordered systems (Gonsalves da Silva and Koiller 1981 ; see also Marland 
1977, Southern et a1 1983). 

The purpose of this letter is to adapt this decimation scheme to a study of quantum 
dynamical critical behaviour. The system treated is the zero temperature anisotropic 
transverse X Y  chain. This includes as special limits the isotropic transverse X Y  and 
transverse Ising quantum systems. The Hamiltonian for the general case is (spin f) 
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where r, J and q are the transverse field, the exchange coupling and the anisotropy 
parameter, respectively. This Hamiltonian has been diagonalised exactly and correla- 
tion functions are also available (Lieb e? a1 1961, Katsura 1962, Niemeijer 1967, Pfeuty 
1970, Barouch and McCoy 1971, Vaidya and Tracy 1978), from which it follows that 
there is a phase transition at Ac= (5/21'),= 1 at zero temperature, for any q (see also 
dos Santos and Stinchcombe 1981). 

We will be concerned here with kink-like excitations generated by quantum fluctu- 
ations from a state in which the spins are aligned anti-parallel to the transverse field ; 
these fluctuations are the ones which drive the transition. With the aid of the Jordan- 
Wigner transformation (Lieb et al 1961) to fermion operators (c+  and c-) ,  the Hamil- 
tonian (1) becomes 

N JN-1 

i - 1  4 i = l  
x =  -r C+C; -- C [c:c;+~ - c;c;+, + q(~;~:+l  - c;c;+~)] (2) 

where a constant term has been dropped. 
The rate of change of c:, obtained by taking the commutator with the Hamiltonian 

(2), involves a linear combination of both c-'s and c+'s, so in an eigenmode c:( 1 )  has 
the form 

(3) + iwr 
c:( t )  = U,, e + TU,, e-'"' 

and c,( 2)  is the conjugate of this expression. In place of the site dependent coefficients 
U, U,, it is convenient to use 

x, = U. + qu, Y n  = 'Jn - Tun* (4) 

The new variables x, y then satisfy the following equations of motion 

where the reduced variables 
The dynamic renormalisation group transformation (Marland 1977, Achiam 1978, 

Stinchcombe 1983) of these variables is obtained by eliminating from the equations 
of motion the variables x, y,, corresponding to sites n of a sublattice of the original 
system (decimation). This results in equations of motion similar to (5)  and (6), where 
the length scale has been increased by a factor b. For b = 2, the resulting equations 
relate the variables at site n with those at site n f 2. In the present case this scheme 
is easily implemented in the two limits q = 1 (transverse Ising model), and q = O  
(isotropic transverse XY model). We now discuss these two cases in turn. 

= w / r  and A = J/2r  have been introduced. 

(i) Transverse Ising model (q = 1 )  

Elimination of y from (5)  and (6) gives 

tx,, = x,,-] + x,,+] 

t 3 [a2 - ( A 2  + l)]/A 

(7) 

(8) 
is the dynamical scaling variable. Using (7) with n replaced by n f 1 to relate x,,,~ to 
x,,,~ and x,, and taking the result back into (7) one gets an equation of similar form 

where 
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to (7) but with n f 1 replaced on the right-hand side by n f 2, and on the left-hand 
side r replaced by 

(9) 

r = 2 c o s k  (10) 

t' = t2  - 2. 

The change of variables 

reduces the recursion relation (9) to the simple form 

k ' = 2 k  

so that k transforms as a wavevector under scaling, and is indeed the wavevector apart 
from a constant factor. Scaling invariance is obtained at the fixed point t* = 2 of (9) 
or, alternatively, at k* = 0. 

Equation (10) yields the dispersion relation 

R2=A2+1+2A COS k (12) 

which is the exact result (Niemeijer 1967, Pfeuty 1970). By setting fl = O  in (12) we 
see that there is one critical mode for c*: at k = O  and A *  = -1. One should bear in 
mind that A*  is negative because in the fermion representation, one looks at excitations 
from a ground state in which r 0 and J = 0 in (1). 

We should note that the existence of a single critical mode (associated with an 
isolated fixed point) enables us to derive a recursion relation for the static behaviour. 
Indeed, the dynamic response function (in momentum space) G(k, fl, A )  transforms 
as (see, for instance, Ma 1976) 

G(k, 0, A )  = b2-"G(bk, b'R, A ' )  (13) 

under a change of length scale by a factor b, where the coupling constant A (and A') 
is assumed to be near the fixed point A* .  By setting = 0, G(k, 0, A )  is precisely the 
static correlation function (Ma 1976) whose critical correlations are controlled by A 
in the present case. Moreover, the equation of motion satisfied by G is the same as 
that for c*,  apart from inhomogeneous terms unimportant in the present discussion. 

The static scaling is thus the R = R' = 0 special case of (9), which gives 

(14) = -h2 

which is equivalent to the exact recursion relation derived by Stinchcombe (1981) for 
the transverse king chain at zero temperature. A solution A' = - l / A 2  is also possible, 
but it is equivalent to matching the disordered phase of the original system into the 
ordered phase of the scaled system, and vice versa. 

Near the critical point (i.e. for A near -1) the usual linearisation procedures applied 
to the full recursion relation (14), result in 

U =  1. (15) 6 - I 1 + A I - 

1967, Halperin and Hohenberg 1969) 
Thus, for large 6 and k small (12) yields the dynamic scaling form (Ferrell er a1 

0 = k ' f (k5 )  (16) 

z=1 (17) 

with 
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and 

f ( x )  = [ 1 + ( c/x)2]”2 

(c  is constant). One can then distinguish two regimes 

These results are the two asymptotic forms on either side of the crossover occurring 
at the place where the wavelength is approximately the correlation length. 

The results (la),  (17) (but not (18)) can be derived directly from the scaling equation 
(9) without using its detailed solution (12), by linearising it and its R = R* special case 
(14) aboutthefixedpoint (a*, A * ) = ( O ,  - 1 )  (whichyieldsR’=2R,A’-A*=2(A -A*)) 
and applying standard procedures to these linearised equations. 

(ii) The isotropic transverse X Y  model (7 = 0) 

In this case, (4) implies xn = y,, so that ( 5 )  and (6) become 

a n  = & - I +  Xn+1 (20) 

where the dynamic variable is now 

r=-[2(1+R)]/A. 

The decimation of sites n f 1 is achieved as before; we get a recursion relation of 
the same form as (9), but with t now replaced by r. This implies 

r = 2 c o s k  (22) 

with k proportional to the wavevector, as before. The dispersion relation then follows 
as 

(23) R =  IA I COS k - 1 

which is the exact result (Niemeijer 1967). 
From (23) we see that the critical mode corresponds to 

so that the transverse XY chain has one critical mode for each value of IA I > 1, which 
is not the long wavelength mode; only at [AI  = 1 is the long wavelength mode critical. 
Thus, the region IA I b 1 corresponds to a critical region (line of fixed points, as suggested 
by Jullien and Pfeuty 1979), whereas for ) A  I c 1 one has a disordered phase. 

In view of this, one should have A ’ = A  = A *  in (13), so that setting R=O in (21) 
would give no information about static behaviour for IAl> 1. Nevertheless, one can 
extract the static critical behaviour through this procedure as one approaches ( A (  = 1 
from the disordered phase. We then obtain 

A’= A2/(A2-2), J A l S l  (25) 

5 - I 1 + A I - ”, 
which has fixed points A *  = -1 and 0. The correlation length for -A s 1 is 

(26) y 2 
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so that the dynamic scaling form yields 

a =  k'g(k4') (27) 

z = 2  (28) 

g(x) = 11 -2/x21. (29) 

as ( A  I + 1+, with 

and 

The above results for Y and z had already been suggested by approximate calcula- 
tions by Gerber and Beck (1977), Jullien and Pfeuty (1979) and dos Santos and 
Stinchcombe (1981). 

To summarise, we were able to derive an exact dynamical decimation transformation 
for quantum chains. From this, the dispersion relation for elementary excitations was 
obtained which satisfies dynamical scaling in the critical region (k, 1/5 + 0). Also, the 
static recursion relation was derived as a special case (zero frequency) of the dynamical 
one. Further extensions of the present work will be investigated, including the region 
0 < 7 < 1, and generalisation to non-zero temperature, to higher dimensions, and to 
random disorder, etc. 
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Oxford where this work was carried out. He also wishes to acknowledge the Royal 
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agreement. Financial support from FINEP, CNPq and CAPES is also acknowledged 
by RRdS while on leave from PUC/RJ. 
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